CALVES NUTRITION AND MANAGEMENT TO PREVENT DIARRHEA

Elena Bonfante, DVM, PhD

DAIRY INNOVATIONS ITALIA

CALF MORTALITY

Highest mortality and morbidity From birth to weaning

53%

CAUSES OF DIARRHEA

Most Common Infectious Organisms and the Age of Diarrhea			
Organism	Age of Diarrhea		
E. Coli	First 3 days		
Salmonella	Day 5 – 14		
Corona Virus	Day 3 – 7		
Rotavirus	Day 3 – 7		
Eimeria spp. (coccodiosis)	Day 7 – 4 to 6 months		
Cryptosporidium parvum (parasite)	Day 5 – 7		
Giardia spp. (protozoa)	Day 14 – 21		

DAIRY COW LIFETIME

BIRTH

DAIRY COW LIFETIME

BIRTH

GOALS

Morbidity < 10% from birth to weaning

Death loss <5% from birth to weaning

< 2% from weaning to freshening

Double the birth weight at weaning

22-24 months freshening

Reduction of Antimicrobial use

FACTORS INVOLVED

OBJECTIVE TO REDUCE SCOUR INCIDENCE

ENVIRONMENT & MANAGEMENT

COLOSTRUM

Nutrients

Antibodies

- IgG 85-90%
- IgA 5%
- IgM 7%

Composition of colostrum,	and whole milk of Holstein cows		
	Colostrum	Milk	
Parameter	1	6	
Specific gravity	1.056	1.032	
Total solids (%)	23.9	12.9	
Fat (%)	6.7	4.0	Critic for
Total protein (%)	14.0	3.1	
Casein (%)	4.8	2.5	body ter
Albumin (%)	6.0	0.5	
Immunoglobulins (%)	6.0	0.09	
IgG (g/100 mL)	3.2	0.06	
Lactose (%)	2.7	5.0	
IGF-I ($\mu g/L$)	341	15	
Insulin ($\mu g/L$)	65.9	1.1	
Ash (%)	1.11	0.74	
Calcium (%)	0.26	0.13	
Magnesium (%)	0.04	0.01	
Zinc (mg/100 mL)	1.22	0.3	
Manganese (mg/100 mL)	0.02	0.004	
Iron (mg/100 g)	0.20	0.05	
Cobalt ($\mu g/100 g$)	0.5	0.10	
Vitamin A (µg/100 mL)	295	34	
Vitamin E (µg/g fat)	84	15	
Riboflavin (µg/mL)	4.83	1.47	
Vitamin B_{12} (µg/100 mL)	4.9	0.6	
Folic acid (µg/100 mL)	0.8	0.2	
Choline (mg/mL)	0.7	0.13	

Critic for thermogenesis and body temperature regulation

COLOSTRUM QUALITY

How to measure it

REFRACTOMETER

Protein reflection = % Brix

Estimates IgG content 85-90% of tot Ig

Threshold >22%

		C		1 .	
Com	position	ot	co	OSI	rum.
~~	00000000	~	~~		

Colostrum

Nutrients

Antibodies

- IgG 85-90%
- IgA 5%
- IgM 7%

• Cytochynes & Growth Factor

	Colostrum	Milk
Parameter	1	6
Specific gravity	1.056	1.032
Total solids (%)	23.9	12.9
Fat (%)	6.7	4.0
Total protein (%)	14.0	3.1
Casein (%)	4.8	2.5
Albumin (%)	6.0	0.5
Immunoglobulins (%)	6.0	0.09
IgG (g/100 mL)	3.2	0.06
Lactose (%)	2.7	5.0
IGF-I (µg/L)	341	15
Insulin (µg/L)	65.9	1.1
Ash (%)	1.11	0.74
Calcium (%)	0.26	0.13
Magnesium (%)	0.04	0.01
Zinc (mg/100 mL)	1.22	0.3
Manganese (mg/100 mL)	0.02	0.004
Iron (mg/100 g)	0.20	0.05
Cobalt (µg/100 g)	0.5	0.10
Vitamin A (µg/100 mL)	295	34
Vitamin E (µg/g fat)	84	15
Riboflavin (µg/mL)	4.83	1.47
Vitamin B ₁₂ (µg/100 mL)	4.9	0.6
Folic acid (µg/100 mL)	0.8	0.2
Choline (mg/mL)	0.7	0.13

Colostrum

				Cholostrum	Milk
•	Cvtochvnes &		Lactoferrina g/L	1.5-5	0.1-0.3
	Crowth Factor		Lactoperoxidasa,	mg/L 30	20
	Growth Factor		Lisozima, mg/L	0.14-0.7	0.07-0.6
			IL-1β, ug/L	840	3
	Antimicrobial activity.		IL-1ra, ug/L	5.2	27
	· · · · ·	1	IL-6, ug/L	77	0.15
	Regulator for:		TNF-α, ug/L	926	3.3
	 gastrointestinal tracts 		ITF-γ, ug/L	260	0.21
	development;		Insulina, mg/L	4.2-34.4	0.042-0.34
	 mucosal growth; 		[–] IGF-1, ug/L	100-2000	<25
	 increased villus size; 		IGF-2, ug/L	200-600	<10
	• Increased glucose uptake.		GH, ug/L	<1	< 0.03
			EGF, mg/L	4-8	2
	Growth factors.	4	TGF- β 2, ug/L	100-300	1-2

TRANSITION MILK

Still a high quality feed

	Colostrum 1	Transition milk (milking postpartum)		Milk
Parameter		2	3	6
Specific gravity	1.056	1.040	1.035	1.032
Total solids (%)	23.9	17.9	14.1	12.9
Fat (%)	6.7	5.4	3.9	4.0
Total protein (%)	14.0	8.4	5.1	3.1
Casein (%)	4.8	4.3	3.8	2.5
Albumin (%)	6.0	4.2	2.4	0.5
Immunoglobulins (%)	6.0	4.2	2.4	0.09
IgG (g/100 mL)	3.2	2.5	1.5	0.06
Lactose (%)	2.7	3.9	4.4	5.0
IGF-I (µg/L)	341	242	144	15
Insulin $(\mu g/L)$	65.9	34.8	15.8	1.1
Ash (%)	1.11	0.95	0.87	0.74
Calcium (%)	0.26	0.15	0.15	0.13
Magnesium (%)	0.04	0.01	0.01	0.01
Zinc (mg/100 mL)	1.22	_	0.62	0.3
Manganese (mg/100 mL)	0.02		0.01	0.004
Iron (mg/100 g)	0.20			0.05
Cobalt (µg/100 g)	0.5		—	0.10
Vitamin A (µg/100 mL)	295	190	113	34
Vitamin E (µg/g fat)	84	76	56	15
Riboflavin (µg/mL)	4.83	2.71	1.85	1.47
Vitamin B ₁₂ (µg/100 mL)	4.9	_	2.5	0.6
Folic acid (µg/100 mL)	0.8	—	0.2	0.2
Choline (mg/mL)	0.7	0.34	0.23	0.13

Composition of colostrum, transition milk and whole milk of Holstein cows

Colostrum collection

INFECTIOUS AGENTS Mycoplasma ssp Mycobacterium Avium Paratuberculosis E. Coli Salmonella spp

Bacteria count < 100.000 cfu/mL Coliform <10.000 cfu/mL Keep the bacterial contamination low

Avoid external contamination

Consequences of microbial contamination of colostrum?

Pathogens may cause disease

(e.g. E. coli, Salmonella spp., Mycoplasma spp., M. avium subsp. paratuberculosis)

 Bacteria counts are associated with ↓ serum IgG levels
 James et al., JDSci 1981;
 Poulson et al., ACVIM 2002;
 Godden et al., JDSci 2012

Sandra Godden, 2015 Virginia State Feed Association & Nutritional Management "Cow" College, University of Minnesota

BE CLEAN & KEEP IT CLEAN Image: Comparison of the second secon

Chlorine dioxide breaks down the biofilm kills Crypto

Colostrum Administration

WHEN...?

Whitin the 1-2h after birth (max 6h)

Feeding colostrum after the gut has closed still offers the benefit of local immunity in the gut lumen

With a nipple bottle or esophageal feeder Body temperature (38-39°C)

Pastourization: 60ºC for 60 minutes

Godden, 2008

Colostrum Administration

HOW MUCH...?

 100 g lgG in the first colostrum feeding;

Brix, %	lgG Conc. (g/L)	Colostrum Quality	
< 15	0 – 28	Poor	
15 – 20	28 – 50	Fair	4 L
20 – 30	50 - 80	Good	
> 30	> 80	Very Good	2 L

<36% of the colostrum were good enough to provide 100 g IgG with 2L

>85% of the colostrum were good enough to provide 100 g IgG with 4L Besser et al., 1991

2. 10 - 12% of calf BW

- If the cow doesn't produce enough colostrum...?
 - BANK OF COLOSTRUM
 - Refrigerate within 1h after harvesting
 - It will last 1 year

• COLOSTRUM REPLACER

• VERIFY PASSAGE OF PASSIVE IMMUNITY TO CALF

REFRACTOMETER

Measure 24 and 48h after colostrum feeding

Estimates IgG content in the blood

Value on sierum/plasma >5.4 g/dL

GOAL: 80% of the calves with successful transfer of passive immunity.

COLOSTRUM Quantity is important

GOAL: MEET THE CALF NEEDS

CALF REQUIREMENTS

- Maintenance;
- Growth;
- Maintain a functional Immune System;

LIQUID FEED

Whole Milk

Milk Replacement

Protein Fat Carbohydrate Sugar Minerals Vitamins

Whole Milk vs Milk Replacer

The relative proportion of energy supplied by different components in milk or milk replacer

CALF NUTRITION, on farm

QUESTIONS TO MAKE:

- 1. What kind of milk???
 - Whole milk

• Waste milk

• Milk replacer

Naturally cover the calf need

Less milk to sell

Save money

Low quality Antimicrobial content Low consistency

Flexibility Safe Cost Not cattle fat (EU)

QUESTIONS TO MAKE:

- 2. How much milk are you feeding???
- 3. How many times a day???
- 4. How much solids are you feeding???

Milk concentration = 12 - 15%

Concentration too high = "cause of scour"

2X or 3X

CALF NUTRITION, on farm

An example

4 L (kg) of milk at 15% = 600 g in 3.4 L of water

0.60 kg of solids for a 40 kg calf Feeding rate = 1.5% of BW

ANY DOUBTS...???

38 -40ºF

FACTORS AFFECTING CALF NEEDS

1. AGE: DEFINE AN OPTIMAL FEEDING PROTOCOL

FACTORS AFFECTING CALF NEEDS

2. TEMPERATURE

Solids quantity (kg/d) needed to cover maintenance requirement only

	Temperature, °C				
BW, kg	18	10	0	-9	-15
27	0.27	0.36	0.41	0.45	0.50
36	0.36	0.41	0.50	0.59	0.64
45	0.45	0.50	0.59	0.73	0.77
55	0.50	0.59	0.68	0.77	0.86

FACTORS AFFECTING CALF NEEDS

3. HEALTH STATUS

Moderate infections increase the energetic needs by 150 – 200%

DON'T RESTRIC FEED IN CASE OF SCOUR!!!

Lochmiller, R. L. and Deerenberg, C. 2000. Trade-offs in evolutionary immunology: just what is the cost of immunity? – Oikos 88: 87–98.

WATER!!!

TECHNOLOGIC FEEDS

- Acidify Milk
- Antimicrobial
- Yeast/prebiotics/beta-glucans

S. Jalukar, Ph.D. et. al. (2009) ADSA

CELMANAX[®]: yeast & yeast wall components

D-Mannos prebiotics, agglutinate bacteria (E.Coli Salmonella)

MOS prebiotics, agglutinate bacteria (E.Coli Salmonella)

Beta-Glucans bind mycotoxins, stimulate immune functions

RFC + Amines interferes with parasitic infection (Crypto)

RFC: Refined Functional Charbohydrates

Celmanax® Liquid in dairy calf milk replacers

Materials and Methods: 30 newborn Holstein calves were used for this trial. Testing period started in November of 2007 and lasted for 60 days. There were two treatments in this experiment:

- Control diet: Milk replacer supplemented with a leading brand of live yeast and yeast cell wall (MOS)
- Test diet: Milk replacer supplemented with Celmanax Liquid at 5 ml/calf/day

Parameter	Control	Celmanax
Beginning Weight, (Kg)	36.40	35.40
Ending Weight, (Kg)	51.30	58.80
Weight Gain, (Kg)	14.90	23.40
Mortality, (%)	0.00	0.00
Milk Replacer Consumed (Kg/calf)	21.80	19.60
Dry Feed Consumed (Kg/calf)	33.50	39.90
Feed/Gain	2.25	1.71
Medical Cost, (\$/calf)	6.33	3.54

Baines, Danica, Mark Sumarah, Gretchen Kuldau, et al.

Aflatoxin, Fumonisin and Shiga Toxin-Producing Escherichia Coli Infections in Calves and the Effectiveness of Celmanax[®]/Dairyman's ChoiceTM Applications to Eliminate Morbidity and Mortality Losses. Toxins 5(10): 1872–1895.

Salinas-Chavira, J., M. F. Montano, N. Torrentera, and R. A. Zinn

2018 Influence of Feeding Enzymatically Hydrolysed Yeast Cell Wall + Yeast Culture on Growth Performance of Calf-Fed Holstein Steers. Journal of Applied Animal Research 46(1): 327–330.

. R. J. Dennis1 and S. Jalukar*2,

Effect of Celmanax SCP on calf performance when fed in the milk replacer and grower phase.

SUMMARY

Colostrum

Milk

Solid Feed

Management

Environment

Less heath problem

Better growth performance

Λ Λ ADG= 1.0kg/d Less time to start the production

Better performance in lactation

+ 1000 kg MILK

Higher costs

Less cost for replacement

Higher return from milk selling

KEEP IN MIND

The genetics of the heifer determine what her potential is. How she is raised, fed and managed determine what she will actually do.

Ouality isn't expensive...

...It's priceless!!!

W. Edward Deming

Thank you